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Abstract

Cardiac mapping provides detailed insights into a
patient’s unique heart anatomy and electrical patterns. In
this paper, we propose an algorithm that integrates cardiac
anatomical information with 12-lead electrocardiogram
(ECG) data to create activation maps without invasive
procedures. To find the activation map of the
corresponding ECG of the patient, we solve the multiple
forward ECG problems. We use the anisotropic eikonal
equation in conjunction with the Lead-Field approach
to compute the ECG. By varying the activation area
parameters and conductivity parameters in the eikonal
equation we generate a subset of ECGs. We use a
variational autoencoder to parameterise the 12-channel
ECG. Then we train a surrogate model on the generated
dataset and apply it to find the closest solutions to the
clinical ECG. To calculate the activation map, we use
the average solution obtained from the found range of
parameters that give close solutions to the patient’s ECG.
Electroanatomical mapping (EAM) data from the left
ventricular endocardium of five patients were used to
validate the algorithm. Comparing local activation times,
the mean absolute error was 16 ms and a mean correlation
of 0.82 was obtained between EAM endocardial activation
times and the proposed algorithm.

1. Introduction

The use of electrocardiography (ECG) in conjunction
with medical imaging data such as computed tomography
(CT) or magnetic resonance imaging has the potential
to solve the problem of reconstructing electrical activity
on the surface of the heart, also known as non-invasive
mapping. In recent years, many efforts have been made
to solve this problem using electrocardiographic imaging
(ECGi) [1]. However, recent studies [2] show that in some
cases this approach inaccurately reproduces the electrical

activation map and demonstrates low correlation between
invasive and non-invasive electrical activation patterns.

Another prominent approach non-invasive reconstruction
of electrical activity is to use an electrophysiological
model to identify optimal model parameters that reproduce
the patient’s ECG. This approach shows promising results
on artificial [3,4] and invasive dataset [5]. In this study we
propose a new algorithm of non-invasive mapping based
on electrophysiological modelling which we validate on
invasive dataset.

2. Methods

2.1. Data

This study utilized retrospective data from five patients
with a wide QRS complex (>120 ms) and presumed left
bundle branch block. These data include cardiac CT
images, 12-lead ECG recordings and electroanatomical
mapping (EAM) recordings of the left ventricular
endocardial surface. For each patient, a 3D patient-specific
geometry model of the heart, torso and lungs was created
by a medical expert using semi-automated segmentation
of the cardiac CT scans. Each invasive dataset contains
between 116 and 354 numbers of recorded electrogram
(EGM) signals.

2.2. Data processing

To process the EGM signals we are used the CoM
algorithm described in [6]. In addition, we relied on
this article [7] to evaluate the quality of the original
signals. Thus, we processed all the EGM signals in
the dataset. We then compared the obtained local
activation times (LAT) with those originally recorded. The
mean correlation of local activation times processed by
the internal algorithms of the EAM system with those
processed by the algorithm described above was 0.91 for
the left ventricular endocardium.
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Gaussian process regression was used to interpolate the
LAT’s on the surface of the heart with an error estimate in
the form of a standard deviation given for each point. This
type of interpolation was based on the article [7], where the
author proposed an algorithm to evaluate the error of the
EAM data from the distance between the EAM points to
the surface mesh and the fragmentation of the electrogram
signals at specific points.

A finite element tetrahedral mesh was then generated
using Gmsh package [8]. In the next step, the universal
ventricular coordinate (UVC) system was defined at each
node of the heart geometry [9]. To accurately represent the
anisotropic properties of the cardiac tissue, a rule-based
method [10] was employed to assign myocardial fiber
orientation. The coordinates of the ECG leads were placed
on the torso surfaces by a medical expert for further
calculation of the 12-lead ECG.

2.3. ECG processing

In a first step, we estimated the boundaries of the
QRS complex in the patients’ ECG signals using the
Hamilton-Thompson algorithm [11]. Then to parameterize
the ECG signals we used a neural network. To standardise
the inputs for the neural network, we cut off the signal with
the QRS complex within the boundaries.

We used a convolutional variation autoencoder (CVAE)
to convert the ECG signal into a set of features (also
called latent space). The input to this neural network
was a QRS signal of dimension (i,300,12), where i is the
number of 12-lead QRS signals to be processed. CVAE has
three system units: encoder, latent space unit and decoder.
An encoder consists of several successive convolutional
blocks. Each block consists of a convolution layer, a batch
normalisation layer, an activation layer and a maximum
pooling layer. The encoder block transforms a QRS
complex into k feature vectors, where k is the parameter
of the encoder. We used the same encoder unit for the
QRS signal of each lead with shared weights. At the output
of the encoder, the received features are concatenated
into a block of latent space and the dimension is further
reduced by the linear transformation. One-dimensional
deconvolution blocks are used to decode the signal. Each
block consists of a convolutional transpose layer, a batch
normalisation layer, and an activation layer.

The loss function for training this neural network is as
follows:

L =

12∑
n=1

||QRStrue−QRSpred||2+KL[N(µ, σ), N(0, 1)]

(1)
, where QRStrue is input QRS signal in one on the 12 lead,
QRSpred - decoded QRS signal, KL - Kullback-Leibler

divergence, N(µ, σ) - normal distribution with parameters
µ and σ given out from latent space.

2.4. Electrophysiology model

To model the depolarisation process of the heart, we
used the eikonal approach. In the eikonal equation, the
arrival times of the wave front ta in the myocardial area
Ω are described based on the spatially inhomogeneous
orthotropic velocity function, encoded as D(x), and the
certain initial activation area Γ at time t0. The eikonal
equation has the form:{√

∇tTa D∇ta = 1 in Ω

ta = t0 in Γ
(2)

where ta is a positive function describing the wavefront
arrival time at location x and D symmetric positive definite
3 × 3 tensor which is determined by the myocardial
fiber direction field and myocardial tissue conductivity
along:across set here as 6.5:1.

To calculate the 12-lead ECG, the lead-field approach is
used, which is written as follows:

V (t) =

∫
Ω

∇Z(x) ·Gi∇Vm(x, t)dx (3)

where Ω is the heart domain and Z(x) is the lead field of
the specific ECG lead. The lead field is the potential field
created by a unit current applied at the electrode location
xi:

∇ · (G∇Z(x) =
∑

ciδ(x− xi) (4)

where ci are relative contributions of the two or more
electrodes and δ is Dirac’s delta function.

2.5. Model parameter setup

To simulate the His-Purkinje system, we used the
approach proposed in the [4] based on myocardial
activation from root points. These root points characterise
the junctions of Purkinje fibres with the myocardium. In
order to limit the range of parameters that need to be varied
when using the model, we restricted the range of variation
of root points coordinates using UVC in accordance
with experimental data of the human His-Purkinje system
anatomy [12].

Additionally, to implement possible heterogeneity of
myocardial conduction properties (e.g. caused by the
presence of fibrosis) we restricted the range of possible
conduction velocities of the excitation wave across the
myocardium from 0.2 m/s to 0.7 m/s. For the variation
of conduction velocities, we used an interpolation function
with conduction parameters defined at the centres of the
segments. To interpolate the value to the other mesh nodes,
we used Gaussian processes regression.
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2.6. Surrogate model

To decrease the quantity of simulations, we employed
a ”surrogate” model that translates the varying model
parameters into a vector of CVAE features. We employed
a neural network comprising dense blocks that include
dense, batch normalization, and dropout layers. Mean
square error was selected as the loss function to train the
neural network.

2.7. Inference of activation maps

For inference of electrophysiological model parameters
related to patient’s ECG we used features obtained from
CVAE. We solve the following optimisation problem:

f(p) = (CV AE(QRSpat)− SM(p))2 (5)

where f is function for optimization, CV AE(QRSpat)
is CVAE features obtained from patient’s QRS, SM(p)
is CVAE features predicted by surrogate model for the
variable parameters of the electrophysiological model p.

We solve the problem for 100 different initial parameter
vectors to obtain sets of parameters reproducing the real
ECG. Then using the mean values of the obtained solutions
we reproduce the activation map.

2.8. Validation metrics

We used three different metrics to validate our results.
The first one is the correlation coefficient between LAT on
the LV endocardial surfaces (EAM vs non-invasive). To do
so, we use the Spearman correlation coefficient.

As a second validation metric we used the mean absolute
error (MAE) between endocardial activation times (EAM
vs non-invasive). It can be calculated using the following
formula:

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (6)

where n is the number of points and Yi and Ŷi are LAT
values.

The last metric is related to the quantification of the
distance between the two late activation points determined
invasively and non-invasively. To remove any artifacts
resulting from noise in the invasive data, we calculate
the centre of mass of the points contained in the surface
region with the 15% of latest activation, for both invasive
and non-invasive activation maps, and then calculate the
Euclidean distance between the centres of mass.

3. Results

We present here a comparison of proposed non-invasive
algorithm activation maps and EAM data. In table 1 shown
results of computed validation metrics for non-invasive
activation maps. In all cases, the Pearson correlation
between EAM and non-invasive algorithm was more then
0.75 and mean correlation was 0.82. Figure 1 shows an
example of activation maps obtained from EAM data and
the non-invasive algorithm.

On the other hand, it is worth noting that the average
distance error was 14.9 mm, which is a significant error.
However, the average distance from the EAM points to
the cardiac mesh was about 9.2 ± 6.1 mm. Therefore,
we assume that the obtained error characterises not only
the accuracy of the algorithm, but also includes the error
obtained in the process of invasive data collection and
transfer of these data to the anatomical surface obtained
from CT images. The mean error in the comparison local
activation times between the non-invasive activation map
and the EAM data was 16 ± 9.1 ms. We compare this
value with the standard deviation obtained by the Gaussian
process interpolation algorithm described in [7]. Obtained
standard deviation ranged from 3.5 to 12.1 ms.

Table 1. Comparison metrics for validation dataset and
algorithm results.

Patient LAT MAE, Distance ECG
number correlation ms error, mm correlation

001 0.76 21.5 ± 13.9 21.3 0.85
002 0.84 12.8 ± 6.7 8.6 0.91
003 0.85 11.5 ± 6.4 19.0 0.90
004 0.79 23.3 ± 12.2 21.5 0.85
005 0.88 11.7 ± 7.4 4.1 0.92

Mean 0.82 16.1 ± 9.1 14.9 0.89

Figure 1. Example of comparison activation times
measured invasively (left panel) and computed using
12-lead ECG by non-invasive algorithm.

A 0.89 correlation coefficient was obtained when
computed and clinical ECGs were compared. An example
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of comparison of ECG signals is shown in Figure 2.

Figure 2. Example of comparison clinical and obtained by
non-invasive algorithm ECGs.

4. Conclusion

In this paper we proposed a new algorithm for
non-invasive cardiac mapping. Our algorithm shows a
high correlation between the patient’s 12-lead ECGs and
calculated ECG, with a correlation of 0.89. Comparing
endocardial local activation times obtained by proposed
algorithm with EAM data from five patients, non-invasive
algorithm showed a mean correlation of 0.82 between
left ventricular endocardial maps. The MAE for local
activation times was 16 ms and the mean absolute error
between late activation zones was 14.9 mm. These results
demonstrate the potential of a non-invasive mapping
system to estimate the electrical activity of the heart.
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